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Abstract

Feeding efficiency and safety are often driven by bolus volume, which is one of the most common clinical measures of
assessing swallow performance. However, manual measurement of bolus area is time-consuming and suffers from high
levels of inter-rater variability. This study proposes a machine learning (ML) pipeline using ilastik, an accessible bioimage
analysis tool, to automate the measurement of bolus area during swallowing. The pipeline was tested on 336 swallows
from videofluoroscopic recordings of 8 infant pigs during bottle feeding. Eight trained raters manually measured bolus
area in ImageJ and also used ilastik’s autocontext pixel-level labeling and object classification tools to train ML models
for automated bolus segmentation and area calculation. The ML pipeline trained in 1h42min and processed the dataset in
2 min 48s, a 97% time saving compared to manual methods. The model exhibited strong performance, achieving a high
Dice Similarity Coefficient (0.84), Intersection over Union (0.76), and inter-rater reliability (intraclass correlation coeffi-
cient=0.79). The bolus areas from the two methods were highly correlated (R? = 0.74 overall, 0.78 without bubbles, 0.67
with bubbles), with no significant difference in measured bolus area between the methods. Our ML pipeline, requiring no
ML expertise, offers a reliable and efficient method for automatically measuring bolus area. While human confirmation
remains valuable, this pipeline accelerates analysis and improves reproducibility compared to manual methods. Future
refinements can further enhance precision and broaden its application in dysphagia research.
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Introduction

Videofluoroscopic study of swallowing (VFSS) is an essen-
tial method for researching swallowing in animals and
humans [1-7]. Quantitative VFSS measures, initially pio-
neered by Leonard and colleagues in the early 2000s [8, 9],
have since led to various practical pixel-based applications
in videofluoroscopy, like measurements related to bolus
area, post-swallow residue, and airway safety [2, 3, 5, 7].
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Pixel-based measurements are powerful tools for assessing
swallowing physiology and impairment and can guide cli-
nicians and researchers in swallowing diagnosis, manage-
ment, and rehabilitation. For example, in pediatric animal
models and in adult humans, bolus area from VFSS stud-
ies have been demonstrated to be the primary predictor of
penetration and aspiration, with larger boluses resulting in
decreased swallow safety [2—4, 10—14].

However, bolus measurement presents a complex task
characterized by time-consuming procedures and suscepti-
bility to errors, particularly when performed manually as in
most swallowing research studies [9, 15]. Pixel-based mea-
sures are vulnerable to several sources of variability and are
prone to poor inter-rater agreement [5]. Such variability can
compromise the accuracy of bolus measurements, which
can reduce their effectiveness as a management tool, and
often requires the inclusion of multiple raters to improve
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reliability. This, in turn, can extend the project’s duration
and increase associated costs. Machine learning (ML) is a
promising solution to these challenges.

ML models have been shown to be effective in assist-
ing with dysphagia risk assessment and identification
[16-26] and in monitoring aspects of swallowing physiol-
ogy [27-32], including automated bolus segmentation and
measurement [33—35]. However, there are challenges to
incorporating ML in research and clinical practice. Develop-
ing ML models, particularly complex deep learning models,
requires significant data, expertise, and ongoing validation
[33]. Integrating ML into research projects can also demand
technical expertise with robust tools [36], which may not be
readily available in standard training programs [37]. Other
challenges include high computing costs, infrastructure
needs, staffing, energy consumption, and the necessity for
frequent updates [38]. This results in low accessibility for
researchers who are not experts in ML as well as protocols
that cannot be adopted by the broader scientific community.
Furthermore, the need for ML models to be validated using
manual measures can make their implementation challeng-
ing, especially in clinical work with VFSS where radiation
exposure is limited.

We used a ML program with a graphical user interface
(GU)), ilastik [39], to evaluate whether non-experts could
be trained with simple documentation to effectively use ML
for bioimage analysis. To do this, we used infant pigs, a
validated animal model for infant dysphagia [1-4, 10-13],
to test whether ML procedures with ilastik could be used
to automatically identify, segment, and measure the arca
of a bolus from VFSS images. Infant pigs are an excellent
model to evaluate this procedure for a number of reasons.
They allow for large numbers of swallows to be recorded
at spatial and temporal precisions much higher than clinical
populations with no concern for radiation exposure. Addi-
tionally, because they allow for investigation into otherwise
healthy infants, we were able to manipulate the feeding con-
ditions of the infants to increase variability in bolus condi-
tions, which facilitates the ability to assess the sensitivity
and precision of the ML model compared to manual bolus
area measurement. This study aimed to assess the reliability
of'the ML pipeline compared to manual bolus measurement,
with the hypothesis that the ML model will accurately mea-
sure bolus area in videofluoroscopy images.

Methods
Animal Model and Preparation

Animal care and procedures were approved by Northern
Arizona University IJACUC (22—-010). We obtained 14
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1-day-old full-term infant pigs, identified as CBO1 to CB14
(Yorkshire/Landrace sows, Premier Biosource). While the
cohort size is relatively small, it was determined to be suf-
ficient to provide robust data for the ML pipeline, as indi-
vidual swallows are the unit of analysis, and we recorded
multiple (~20) swallows per individual. Throughout the
course of the experiments, pigs received an infant pig milk
replacer formula (Birthright Baby Pig Milk Replacer, Ralco
Show, Marshall, MN USA) and were trained to feed from
custom bottle-nipples. Additional housing and feeding fol-
lowed previously outlined standards of care for this specific
animal model [2, 3, 40]. To support a concurrent research
project separate from the aims of this ML validation project,
tantalum beads (0.8 mm diameter) were surgically placed
within key oropharyngeal structures, encompassing the soft
palate, palatopharyngeal arches, hard palate, and tongue
[see refs [2, 3] for details]. Beads were implanted to enable
X-ray Reconstruction of Moving Morphology (XROMM)
analysis, a technique used to reconstruct 3D motion of ana-
tomical structures [41]. Analgesia [buprenorphine (0.1 mg/
kg) and meloxicam (0.4 mg/kg)] was provided before and
for 48 h after surgery. Animals were monitored for any
sign of discomfort after surgery every 3 to 5 h. We did not
observe any impact of bead placement on feeding function,
and pigs generated similar amounts of intraoral pressure,
with similar feeding rates before and after bead placement.

Image Acquisition

Videofluoroscopic data was recorded in the lateral view
using a GE 9400 C-Arm X-ray system (64 kV, 5.1 mA)
and a high-speed Redwood camera (IO Industries, Ontario,
Canada). Images were captured at 100 fps with a 7500 us
exposure and a 3048 x3048 pixel resolution. The 100 fps
frame rate, common in animal studies, ensures that rapid
behaviors are captured in detail. The 7500 ps exposure min-
imized motion blur, particularly for fast-moving structures.

A standard grid was used to remove image distor-
tion [41]. We bottle-fed pigs a combination of infant milk
replacer (Ralco Birthright, Marshall, MN, USA) and barium
(75 g/1500 ml of milk) for X-ray contrast (E-Z-PAQUE,
Bracco Diagnostics, Milan, Italy). Because these data
were collected as part of another research project, we fed
the pigs using two distinct bottle nipple types which were
expected to result in variable bolus areas across individu-
als to fully capture potential for variation in bolus volume.
Bottle nipples include a standard, hollow nipple, as well as a
branching duct nipple similar to Mayerl et al. [11]. Exclud-
ing the initial 10 s of feeding, which differs markedly from
the majority of the feeding bout in a variety of physiological
parameters [42, 43], we recorded approximately 20 swal-
lows per pig for each experimental condition (Fig. 1). This
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Fig. 1 Example of selected recording sequence. Pre-processed bolus
images (frame number in yellow) from 21 consecutive swallows dur-
ing a feeding session. These frames were recorded at 100fps, over

approach was employed to ensure that similar sample sizes
were collected for each nipple type, regardless of feeding
duration or rate.

Dataset

For this project, we curated a set of 26 videos from 8 infant
pigs, capturing a total of 336 swallows (Supplementary
material 1). The initiation of each swallow was identified as
the frame at which the bolus was accumulated in the back of
the oropharynx prior to passing over the epiglottis following
published procedures [2, 3, 40]. The raw dataset consisted
of boluses that varied in their shape, brightness, and con-
trast, as well as the presence of bubbles inside the bolus and
other artifacts in the images (Fig. 1, Supplementary material

1, page 3).
Manual Bolus Measurements

Before making measurements for this study, eight raters
received training on measuring bolus area to ensure they
attained both high intra- and inter-rater reliability. All rat-
ers were trained on a set of bolus images until each of their
bolus measurements were within +10% of the mean mea-
surement of that bolus following standard published proto-
cols (i.e. the average measurement of the eight raters who
were being trained) [2, 3, 40].

10.34 s. These frames display the variety in bolus features (shapes,
bubbles, artifacts, brightness, and contrast)

These trained raters then utilized the free-hand selec-
tion tool in ImageJ (v. 1.53e National Institutes of Health,
Bethesda, MD, USA) [44] to manually measure the area of
bolus of the 336 raw swallow images following published
protocols [3, 4, 10—13, 40, 45]. In short, raters outlined the
bolus, including any bubbles at the frame at which the swal-
low was initialized following previously published proto-
cols [3, 4, 1013, 40, 45]. Raters calibrated the scale of the
images (in pixels per millimeter) by measuring the diameter
of a metal ring in the bottle lid (real diameter 6.45 cm) in
the videofluoroscopic images. The bolus area in pixels was
converted to mm? by dividing by the scale squared. While
bolus area is a 2-D measure of a three-dimensional space,
it is commonly used in clinical and basic science research,
and is thought to correlate well with volume [46]. Each rater
recorded the time it took to measure the area of 20 boluses.
We used the average time (across raters) that it took to mea-
sure 20 boluses to calculate the approximate total time to
measure the bolus area for all 336 images (Supplementary
material 2).

ML Bolus Measurements Workflow
The workflow, from image acquisition to ML training and

subsequent bolus predictions, is illustrated in Fig. 2, and
described in detail below.
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Fig. 2 Flowchart illustrating the automated bolus measurement pro-
cess. The initial step encompasses image acquisition and image prepa-
ration, including image pre-processing and bolus cropping. The second
step is training the ilastik machine learning model using two work-
flows: autocontext and object classification. In the autocontext work-
flow, yellow represents the bolus, blue the background, and red the
artifacts. The last step is using batch processing to predict the boluses

Image Pre-processing

To minimize the impact of noise artifacts on algorithm
training, each raw image was pre-processed using Imagel
by applying the “enhance contrast” function with a 0.35%
adjustment and a fast Fourier transform band-pass filter
(examples in Supplementary material 1, pages 1-2). The fil-
ter was set to reduce large structures down to 160 pixels and
small structures up to 3 pixels while suppressing horizontal
stripes with a 5% tolerance in direction. Additionally, after
filtering, the “autoscaling” function was applied to improve
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in new images. The resulting data are exported to CSV and compiled
for analysis. To assess model performance, a comprehensive evalua-
tion is conducted by comparing predicted bolus regions with ground
truth masks. Specific metrics are calculated to quantify the accuracy of
the predictions. Legend: DSC— Dice Similarity Coefficient; FN— false
negative; loU- Intersection over Union; TP— true positive; TN— true
negative

image brightness and contrast. A macro was created in
ImageJ] to automatically pre-process batches of images
(Supplementary Material 3). Finally, the pre-processed fig-
ures were manually cropped to the region of the bolus with
as little background area as possible to reduce potential arti-
facts in the ML process.
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Supervised ML-based Image Segmentation Using llastik
Software

The software ilastik (version 1.4.0 for Windows 64-bit)
was used to train the ML model (Fig. 2). ilastik is a Python-
based interactive tool that employs ML-based bioimage
analysis to classify pixels and objects based on user-pro-
vided annotations, requiring no machine learning expertise
[39]. ilastik uses these user annotations, which can be as few
as two labels (such as foreground or background) to pre-
dict the class of unannotated pixels or objects. This toolkit
encompasses various ‘workflows’ designed to accomplish
specific tasks [47], including the autocontext [48] and object
classification workflows used in this study. When choosing
ilastik for this project, our primary considerations were its
existing validation for bioimages, user-friendly interface,
and suitability for end users who may not have significant
computational expertise [39, 49, 50].

Each rater who previously performed manual bolus mea-
surements received brief ilastik software training and had
access to a step-by-step tutorial (Supplementary Material
3). Each rater (1 to 7) independently selected 15 training
images (less than 5% of the dataset) to capture variations
in bolus shapes, bubbles, artifacts, and contrast levels. This
ensured variability in the training data for the ML model.
Rater 8 used a subset of 12 images to assess the model’s
performance with a smaller training dataset. They then used
the autocontext and object classification ilastik workflows
to identify and measure the bolus (described in detail in
Supplementary Material 3). Using the image features com-
puted by the object classification workflow, object predic-
tions were batch-processed for the entire dataset. These
predictions were exported in HDF5 (.h5) and converted to
jpeg format using the data conversion workflow in ilastik.
Additionally, we exported the object area data (in CSV for-
mat) from ilastik. Object areas for each bolus and for each
rater were batch processed in R (v. 4.3.1), using the GUI
RStudio (2023.06.2 Build 561) (Supplementary Material 3).

Hardware

In order to evaluate the ML model performance in differ-
ent settings, two distinct hardware configurations were
deployed. Both setups operated on the Windows 11 Pro
operating system. The high-performance setup included
an Intel® Core i9-13900 CPU running at a speed range
of 1.5-5.6 GHz, 64 GB of RAM (operating at 4400 MHz
DDRS5), 1 TB SSD hard drive (M.2 2280, NVMe, C40), and
a NVIDIA GeForce RTX3050 graphics processing unit with
8 GB of GDDR6 memory. Raters 1 to 7 used the same high-
performance computer and lighting conditions. To evaluate
the model’s performance in more accessible settings, we

replicated the analysis using a home-setup configuration,
a common resource for many researchers. The home com-
puter hardware setup, used by rater 8, included an Intel®
Core i3-10100T CPU running at 3.00 GHz, 8 GB of RAM
(operating at 2400 MHz DDR4), hard drive SSD M.2 Adata
SX6000 256 GB, and integrated Intel® UHD Graphics.

Evaluation of Performance

To evaluate the ilastik model’s performance, we employed
standard machine learning metrics: Intersection over union
(IoU), Dice similarity coefficient (DSC), and sensitivity
[33-35, 51-55]. To calculate these metrics, we first deter-
mined the number of true positive (TP), false positive (FP),
false negative (FN), and true negative (TN) pixels. These
pixel-level metrics formed the basis for calculating other
performance indicators. Ground truth masks were manually
created by the first author for all boluses. These masks were
binarized, representing the bolus as a white foreground on a
black background. The Mask Instant Comparator (MiC) plu-
gin (MIT, USA) for Fiji [56], a specialized tool for segmen-
tation mask comparison, was used to compute these metrics.
IoU, a common metric for assessing segmentation overlap,
measures the intersection between the predicted and ground
truth masks divided by their union [54, 55]. DSC, another
similarity measure, quantifies the overlap between two sets
relative to their combined size [54, 57]. Sensitivity, or True
Positive Rate, evaluates a model’s ability to correctly iden-
tify positive instances [58]. In image validation literature,
a DSC exceeding 0.70 generally indicates strong overlap
between the predicted and ground truth segmentations [52,
53]. Similarly, an IoU greater than 0.7 is often considered
indicative of high segmentation accuracy [54, 55]. These
benchmarks provide a general context for interpreting the
model’s performance. The following formulas were used to
calculate these metrics:

TP
oV = 7p T FP 7 FN
2TP
DSC = 2TP + FP + FN
Sensitivity = L
Y= TP 1 FN

To adhere to common clinical research practices, we also
evaluated the inter-rater reliability and model’s performance
using inter-rater intraclass correlation coefficient (ICC) and
coefficient of variation (CV) [59, 60]. These statistics indi-
cate how similar the bolus area measurements were across
raters. We calculated the inter-rater ICC and CVs separately
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Fig.4 Linear regression model. Linear regression model comparing each rater’s bolus predictions generated by each machine learning model (y)
to manual bolus measurements (x), measured in pixels. The independent variable is the average value of the manual bolus measurements

for the manual method and the ML method. Inter-rater
ICCs and their 95% confidence intervals (CI) were calcu-
lated based on a single-rating, absolute agreement, two-way
mixed-effects model. This model is based on the assump-
tion that bolus measurements would be made using a single
rater when either method (manual or ML) were applied for
research. Reliability is considered excellent if the lower
limit of the 95% CI of the ICC is greater than 0.90, good
if between 0.75 and 0.90, moderate if between 0.5 and
0.75, and poor if below 0.5 [61]. The CV was calculated
as standard deviation (in our case, the standard deviation of
the bolus measurements from all raters) as a percentage of
the mean value (in our case, the mean bolus measurement
across all raters). The CV was calculated for each bolus and
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for each method. CV values<10% were considered excel-
lent, 11-20% good, 21-30% acceptable, and >30% poor.
We also evaluated intra-rater reliability through linear
regression of a rater’s manual measurements against their
ML measurements. The R? values indicate how correlated
the measurements of the two methods were. Although we
do not know the true sizes of the boluses in this study, man-
ual measurements are standard practice and are therefore a
useful baseline for comparison. The mean bolus areas were
compared using the same approach (Figs. 3 and 4). Given
the inherent challenges in measuring boluses that contain
bubbles, we separated boluses with bubbles from boluses
without bubbles. We also employed a linear mixed-effects
model analysis to explore potential distinctions between
manual and ML measurements. This test aimed to understand
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the relationship between mean bolus area and measurement
method (fixed effect, manual or ML), while accommodat-
ing the variability introduced by individual pig subjects as a
random effect with an intercept. Additionally, Levene’s test
assessed the equality of variances between the two methods.
All statistical analyses were performed using SPSS statistics
(Version 29, IBM Corp., Armonk, NY, USA).

Qualitative Analyses

We also investigated potential avenues through which man-
ual and ML methods might differ, as it is possible that dif-
ferences between the measurements made by these methods
may reflect the inaccuracy of the manual method, the ML
method, or both methods combined. In other words, differ-
ences between the methods (i.e. low intra-rater reliability)
do not necessarily indicate that the ML method is perform-
ing poorly—the manual method may be performing poorly
instead. Through in-depth analysis of these cases, we identi-
fied recurrent patterns in the data and model behavior, pav-
ing the way for targeted improvements.
The qualitative analysis involved a 4-step workflow:

a) A thorough examination of artifacts, achieved by indi-
vidually scrutinizing the original bolus images, the
pre-processed images, and their corresponding ML pre-
dictions (Supplementary material 1, page 3).

b) We evaluated the influence of individual pigs on ML
results. To do this, we compared the first swallow image
of each recording (trial) to its ML prediction (Supple-
mentary material 1, pages 1-2). For these initial swal-
low images, we then calculated the mean bolus area (in
both pixels and mm?) across boluses for each record-
ing and for each method. Additionally, we computed
the percent difference in bolus areas (in mm?) between
the manual and ML methods for each recording. Lastly,
we calculated the mean coefficient of variation of bolus
area for each recording and for each method.

c) Utilizing the linear regression of manual and ML
measurements in pixels, we computed the difference
between the expected ML value and the observed ML
measurement. This enabled the identification of the top-
performing predictions (10%, n=34) (Supplementary
material 1, pages 4-16) as well as the most discrepant
predictions (10%, n=34) (Supplementary material 1,
pages 17-29).

d) We assessed the impact of artifacts on the ML predic-
tions by comparing ML predictions made before and
after the manual removal of artifacts. In other words, we
introduced a human-supervised component into the ML
workflow. To begin, we selected the results of one rater
(rater 8). Using Imagel’s “color picker” and “brush”
tools, we then excluded the obvious artifacts before
measuring the area of the revised bolus prediction with
the “set threshold”, “make binary,” and “analyze par-
ticles” features. Following this process, we assessed the
impact of the artifacts by comparing the coefficient of
determination (R?) of the linear regression between the
average manual measurements and the ML predictions
before and after artifact correction.

Results

The ML pipeline took an average of 1 h and 42 min for
training and 2 min and 48 s for batch processing the dataset.
Raters spent an average of 23 s to manually measure each
bolus, while the ML pipeline took only 0.5 s (Table 1, Sup-
plementary material 2). This translates to a 97% time sav-
ings compared to manual measurements. Seven raters used
high-performance computers (raters 1-7), while one used a
home computer (rater 8). The ilastik batch processing time
was 1.5 min on average for high-performance setups and
12 min for the home setup. Table | summarizes the results
of bolus area measurement for manual and ML workflows,
including analysis time. Table 2 presents the ICCs and CVs
for each method, comparing performance on boluses with
and without bubbles. Manual measurements exhibited low
variability (CV: 5.3%), with 94.6% rated excellent, 4.8%
good, and 0.3% poor. ML measurements exhibited higher
inter-rater variability (CV: 17.8%). While 76.5% of ML
measurements were rated as good or excellent, a significant
proportion (23.6%) were deemed acceptable or poor.

Model Performance Evaluation

The model exhibited strong performance, achieving a mean
DSC 0f 0.84 and an IoU of 0.76 (Table 3). Within each rater,
there was a strong relationship between manual and ML
bolus areas (R? ranged from 0.66 to 0.72, p<0.001) (Table 3;
Figs. 3 and 4). This was especially true for boluses without
bubbles (R*=0.78, p<0.001). The relationship was strong,

Table 1 Bolus area and analysis Bolus area

Analysis time per bolus

time by method and nipple type

Standard nipple, Duct nipple, SD, All nipples, SD, range
SD, range (mm?) range (mm?) (seconds)
n=170 n=166 manual 7=20, ML n=336

Method All nipples, SD,
range (mm?)
n=336
Legend: ML: machine learning; Manual 185262 (54-325)
SD: standard deviation ML 192466 (52-359)

199458 (90-322)
215465 (60-407)

171+63 (54-322)
19068 (81-350)

23.98+10.86 (9.65-46.10)
0.50+0.66 (0.26-2.14)
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Table 2 Inter-rater reliability and variability for manual and ML methods

All boluses
Method

Boluses with bubbles

ICC
0.95
0.70

Boluses without bubbles

ICC

CV+£SD
6.6+4.5

p-value
<0.001
<0.001

95% C.1I.

CV+SD
45+2.5

p-value
<0.001
<0.001

95% C.1.

CV£SD

53+3.5

p-value
<0.001
<0.001

95% C.1.

C

IC

0.93, 0.96

0.97, 0.98

0.97
0.81

CI: confidence interval; CV: coefficient of variation; ICC: Intraclass Correlation Coefficient; SD: standard deviation

0.97 0.97,0.98

0.79

Manual

ML

20.0+6.7

0.45,0.83

16.5+8.4

0.61, 0.90

17.8+8.0

0.58, 0.88

Table 3 Model performance evaluation: manual vs. machine learning
measurements

Rater DSC ToU Sensitivity  R?

1 0.81 0.72 0.80 0.67"
2 0.84 0.73 0.86 0.69"
3 0.87 0.76 0.86 0.72"
4 0.83 0.75 0.85 0.70"
5 0.88 0.77 0.87 0.72"
6 0.85 0.75 0.83 0.70"
7 0.80 0.71 0.81 0.66"
8 0.86 0.76 0.87 0.71"

Mean+SD  0.84+0.02 0.74+£0.02 0.84+0.02 0.69+0.02
Legend: Values indicate similarity between manual and machine
learning measurements. The R? values represent the coefficient of
determination for linear regressions performed between manual and
machine learning measurements, calculated individually for each
rater. DSC: Dice similarity coefficient; IoU: Intersection over Union;
SD: standard deviation; "p<0.001

but less so, when boluses with bubbles were compared (R =
0.67, p<0.001). The linear mixed effects model revealed no
significant difference in bolus area between manual and ML
methods across pigs (p=0.09), and Levene’s test found no
significant difference in variances between the measurement
methods (p=0.48).

Qualitative Analysis

Across the 26 recordings, the average percent difference in
bolus area between manual measurements and ML predic-
tions for each trial ranged from 4.91 to 20.50%. The quali-
tative analysis revealed the existence of artifacts primarily
attributed to bubbles and the surgical placement of beads,
integral components of the original research project (Sup-
plementary material 1, page 3). These artifacts were con-
sistently observed across all recordings, and removing them
using the integrated human-supervised workflow improved
the ML predictions. The R? value of the linear regression
between ML predictions (after artifacts were removed) and
the average manual measurements was 0.85 (p<0.001), a
remarkable enhancement compared to the R? of 0.74 for
the average ML predictions without artifact correction.
For visual reference, examples illustrating the appearance
of boluses after undergoing this workflow can be found in
Supplementary material 1 (pages 1 and 2).

The examination of top-performing predictions (n=234,
Supplementary material 1, pages 4-16), and those display-
ing significant deviations (most discrepant predictions,
n=34, Supplementary material 1, pages 17-29), revealed
occurrences of both underestimations and overestimations
across both methods. The comparison between the predic-
tions and the probable cause investigation can be seen in
Supplementary material 1, page 30.
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Discussion

The ML-based pipeline demonstrated high accuracy in mea-
suring bolus area from videofluoroscopy images, as evi-
denced by the high DSC scores. The model demonstrated
good predictive performance, even when trained by non-
expert ML users on a small fraction of the dataset (less than
5%) and processing images with diverse artifacts.

ML has been used extensively in swallowing research
for different applications [16-22, 27-30, 33-35]. One of
the major advantages of employing these methods is their
accuracy, inter-rater reliability, and time-saving potential.
Previous studies have demonstrated that ML models created
using ilastik for different biomedical tasks can significantly
reduce analysis time, with reported reductions of up to 80 to
90% compared to manual methods [62—64] Our ML model
further supports this, reducing analysis time by 97% com-
pared to manual workflow, making it ideal for large-scale
studies.

Understanding how bolus volume affects swallowing is
critical in dysphagia research [65]. Studies reveal patients
with oropharyngeal dysphagia or aspiration exhibit altered
responses to bolus volume and viscosity changes, from
premature infants to post-stroke adults [10, 45, 65-67].
This reflects a reduced ability to adapt swallow response
to different volumes, increasing the risk of penetration or
aspiration. Bolus volume and fluid viscosity influence oral
sensory receptors for touch, kinesthesia, and proprioception,
affecting oral and pharyngeal kinematics, upper esophageal
sphincter opening, and hyolaryngeal excursion, and corre-
spond to differences in cortical activation in the brain [68,
69]. Precise bolus measurement is crucial for swallowing
studies, and refined ML models can streamline this process,
enabling more efficient research.

Our ML model demonstrated strong performance, achiev-
ing a DSC of 0.84 and an IoU of 0.74, even when tested on
a simplified home setup with a reduced dataset. Notably,
this configuration achieved comparable or superior results
to the ilastik model using more robust hardware (Table 3).
These findings highlight the feasibility of our approach for
researchers with limited computational resources.

While Ariji et al. achieved a higher DSC of 0.94 using
deep learning for bolus segmentation in VFSS, their model
required 15 h and 43 min of training using more robust hard-
ware [33]. In contrast, our model was trained by non-ML
experts and completed in just 1 h and 42 min, significantly
faster than other approaches. Similarly, Li et al. proposed a
model with lower performance metrics, achieving a DSC of
0.81 and an IoU of 0.68, but with a faster inference speed
of 49.34 ms [35]. In comparison, our model’s inference
time was slightly longer—260 ms on a high-performance
setup and 2.14 s on a home-computer setup (Supplementary

material 2) —while delivering superior segmentation accu-
racy. Shaheen et al. reported a less accurate model, with a
mean DSC of 0.67 for bolus segmentation, but did not dis-
close training or inference times [34]. While deep learning
approaches such as those above can achieve high accuracy,
they often demand significant computational resources and
technical expertise [36]. These results imply the use of ilas-
tik for bolus identification is accurate and precise in com-
parison to more computationally expensive models, with
minimal ML expertise required for use, suggesting that its
use may prove clinically relevant for a variety of researchers
in the field of dysphagia.

The qualitative analysis revealed the presence of various
artifacts, including bubbles, which can arise from factors
such as incomplete seals or high flow rates during bottle
feeding, and are likely a component of most infant feeding
studies. While previous studies have not explicitly addressed
the impact of bubbles on bolus measurement, our findings
suggest that boluses with bubbles can lead to increased
inter-rater variability for both manual and ML methods.
To address this, we propose a multi-pronged approach:
enhanced rater training, model refinement, and integrated
human-supervised workflows. Future research should focus
on refining these methods to improve accuracy and broaden
their application in swallowing research.

Limitations

The ilastik software may produce imprecise predictions,
potentially impacting research results. To address this, we
recommend a multi-pronged approach combining ilastik
with human expertise. Additionally, the model’s perfor-
mance can be influenced by factors such as user experience
and training data. The use of an animal model also allowed
us to record at higher frame rates than in common clinical
settings (100 fps vs. 15-60 fps in clinical settings). Lower
frame rates in clinical settings might induce higher variabil-
ity in the bolus, due to swallow initiation occurring between
rather than within frames. Researchers should use the ML
pipeline cautiously and consider a pilot study validating the
model to manual measures to assess its performance in their
specific context.

Conclusions

The ML pipeline using ilastik accurately measured boluses,
demonstrating strong performance with a mean DSC of
0.84, an IoU of 0.76, and a 97% reduction in analysis time.
The ML workflow offers several advantages to address
large datasets, including reduced analysis time, smooth
learning curve, and free access, complemented by an array
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of tutorial resources. In summary, this method offers an
efficient, reproducible, and low-cost approach for measur-
ing bolus area from videofluoroscopy images of an animal
model, potentially making it versatile and applicable across
species. ML pipeline predictions ought to undergo human
confirmation, and by refining both the raters and the ML
model, we can achieve even greater precision. This work
has the potential to facilitate the ability to evaluate bolus
area, a critical component of swallow performance, with
more swallows in less time than manual measures, and rep-
resents an important step forward in our ability to diagnose
and evaluate dysphagia.
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